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Abstract: Adaptive streaming has become a key technology for various multimedia services, such as
online learning, mobile streaming, Internet TV, etc. However, because of throughput fluctuations,
video quality may be dramatically varying during a streaming session. In addition, stalling events
may occur when segments do not reach the user device before their playback deadlines. It is well-
known that quality variations and stalling events cause negative impacts on Quality of Experience
(QoE). Therefore, a main challenge in adaptive streaming is how to evaluate the QoE of streaming
sessions taking into account the influences of these factors. Thus far, many models have been
proposed to tackle this issue. In addition, a lot of QoE databases have been publicly available.
However, there have been no extensive evaluations of existing models using various databases.
To fill this gap, in this study, we conduct an extensive evaluation of thirteen models on twelve
databases with different characteristics of viewing devices, codecs, and session durations. Through
experiment results, important findings are provided with regard to QoE prediction of streaming
sessions. In addition, some suggestions on the effective employment of QoE models are presented.
The findings and suggestions are expected to be useful for researchers and service providers to make
QoE assessments and improvements of streaming solutions in adaptive streaming.

Keywords: quality of experience; quality model; adaptive streaming; multimedia services

1. Introduction

Watching online videos has become one of the most popular user activities due to
the fast development of multimedia services, such as online learning, mobile streaming,
Internet TV, etc. According to [1], the average online video viewing hours have increased
68% globally in 2019. As of 2021, streaming video accounts for over 53% of all traffic on
the Internet [2]. HTTP Adaptive Streaming (HAS) has become the standard solution for
multimedia streaming over the Internet nowadays [3]. In HAS, a video is firstly encoded
into multiple versions corresponding to different quality levels. Then, each version is
divided into short chunks called segments. Every segment has the same playback duration
commonly ranging from 2 s to 10 s. Segments with suitable versions are delivered to the
user device according to the estimated throughput. Because of throughput fluctuations, the
segments’ versions are often changing, resulting in quality variations during a streaming
session. In addition, stalling events may occur when segments do not reach the user device
before their playback deadlines. To reduce dramatic quality variations and sudden stalling
events, a special stalling event, which is called an initial delay, is inserted before starting the
video playback [4]. However, all these factors are well-known to cause negative impacts on
the Quality of Experience (QoE) perceived by users [5]. Therefore, to provide the highest
possible quality to users, it is imperative to assess the QoE of streaming sessions taking
into account the joint impacts of the factors.

Future Internet 2022, 14, 151. https://doi.org/10.3390/fi14050151 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14050151
https://doi.org/10.3390/fi14050151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-1122-0650 
https://doi.org/10.3390/fi14050151
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14050151?type=check_update&version=2


Future Internet 2022, 14, 151 2 of 21

In the literature, many models have been proposed for predicting the QoE of HAS
streaming sessions [6–13]. These models are different in the number of considered factors,
modeling approach, etc. Moreover, they are usually evaluated over a small number of
databases (mostly one or two), making it difficult to realize the true effectiveness of existing
QoE models [6–9,11]. Recently, many QoE databases have been made available to the public
with different settings of the impact factors, viewing devices, codecs such as H.264 [14] and
HEVC [15], session durations, and session generation methods [16–22].

To the best of our knowledge, there have been no extensive evaluations of QoE models in
the literature. Thus, it is challenging for service providers and practitioners to choose appropri-
ate QoE model in practice. In addition, it is worth emphasizing that the evaluation of any QoE
model should be carried out over different databases to truly reveal the model’s performance.
In this paper, we present a comprehensive evaluation of thirteen existing QoE models (see
Table 1) for HTTP Adaptive Streaming over up to twelve open databases. Through experiment
results, various findings and suggestions are provided with regard to the performance of the
models. In particular, we are able to obtain the following important observations.

• All considered models yield better performance on H.264-encoded streaming sessions
than HEVC-encoded ones. Surprisingly, even the models taking into account HEVC
characteristics such as P.1203 and KSQI are not very effective for HEVC-encoded sessions.

• To obtain the high and stable performance for different devices, it is recommended to
use Mean Opinion Score (MOS) and Video Multi-method Assessment Fusion (VMAF)
to calculate segment quality values.

• Besides quality variations and stalling events, temporal relations between impairment
events should be also considered in QoE models.

• The use of multiple statistics as model inputs is indispensable to fully represent quality
variations and stalling events in a streaming session. However, it is also found that
complex models that contain more statistics do not always lead to better performance.

• Among the considered models, the LSTM model [10] is the best one since it provides
the highest and most stable performance across viewing devices and session durations.
However, there is still room for improvements of the existing models, especially in the
cases of various viewing devices and advanced video codecs.

The rest of this paper is organized as follows: an overview of existing QoE models is
given in Section 2. The experiment settings of the evaluation are described in Section 3. The
obtained results and discussions on the performances of individual models are presented
in Section 4. Finally, Section 5 concludes the paper and gives an outlook on future work.

2. Overview of QoE Models

In the context of video streaming, the concept of Quality of Experience (QoE) is
referred to as the extent users are annoyed or delighted with videos provided by applications or
services [3,23,24]. In the literature, many QoE models have been proposed that use different
inputs and modeling approaches to estimate the impacts of quality variations and stalling
events. In this section, we present a brief overview of typical QoE models. For detailed
classifications and discussions of QoE models, the readers are referred to other survey
studies [3,25].

In general, a QoE model can be characterized by five aspects, namely (1) the key
influence factors, (2) segment quality metrics, (3) model inputs, (4) modeling approaches,
and (5) session durations. Table 1 presents a comparison of typical models according
to these aspects. Here, the key influence factors are initial delay, quality variations, and
stalling. In addition, the modeling approaches could be simple analytical functions or
complex machine learning models like deep neural networks.

From Table 1, we can see that, with respect to the included influence factors, all these
models take into account the impact of quality variations. The influence of initial delay
and stalling events is also considered in most of the models, except Rehman’s, Guo’s, and
Vriendt’s. For memory-related effects, they are included in the seven models of LSTM,
ATLAS, P.1203, CQM, biQPS, SQI, and KSQI.
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Table 1. Summary of existing models

Models Modeling
Approaches

Segment Quality
Parameters

Session
Duration
(Seconds)

Inputs Used to Represent the Impacts of Factors

Impact of
Initial Delay Impact of Quality Variations Impact of Stalling Events Memory-Related Effects

Rehman’s [6] Analytical
functions

Subjective quality
metric (i.e., MOS) 5–15 —

First segment quality
Sum of the impacts of the previous
quality switches which is modeled by a
piece-wise linear function of the
switching amplitudes

— —

Guo’s [7] Analytical
functions

Subjective quality
metric (i.e., MOS) 10 — Median segment quality value

Minimum segment quality value — —

Vriendt’s [11] Analytical
functions

Subjective quality
metric (i.e., MOS) 120 —

Average and standard deviation of
segment quality values
Number of segment quality switches

— —

Singh’s [9]
Random
neural
network

Bitstream-level
parameter (i.e., QP) 16

Initial delay is
considered as a
stalling event

Average of QP values over all macro-
blocks in all frames of the whole
session

Total number of stalling events
Average of stalling durations
Maximum of stalling durations

—

Liu’s [8] Analytical
functions

Objective quality
metric (i.e., VQM) 60

Linear function
of initial delay
duration

Weighted sum of segment quality
values
Average of the square of switching
amplitudes

Total number of stalling events
Sum of stalling durations —

Yin’s [12] Analytical
functions

Bitstream-level
parameter

(i.e., bitrate)
N/A

Linear function
of initial delay
duration

Average of segment quality values
Average of switching amplitudes Sum of stalling durations —

LSTM [10]

Long-Short
Term
Memory
(LSTM)

Subjective quality
metric (i.e., MOS) 60–76

Initial delay is
considered as a
stalling event

Segment-basis parameters LSTM network with stalling
durations

Segment-basis parameters
and stalling durations

ATLAS [26]
Support Vector
Regression
(SVR)

Objective quality
metric (e.g., STRRED

or VMAF)
10 and 72

Initial delay is
considered as a
stalling event

Average of frame quality values
Time per video duration over which a
segment quality decrease took place

Total number of stalling events
Sum of stalling durations

Time since the last stalling
event or segment quality
decrease

P.1203 [13]

Analytical
functions
and
Random
forest

Subjective quality
metric (i.e., MOS)
or Bitstream-level
parameters (i.e.,

frame types, sizes,
and QPs of frames,

bitrates, resolutions,
and frame-rates of

segments)

60–300
Initial delay is
considered as a
stalling event

Number of segment quality switches
Number of segment quality direction
changes
Longest quality switching duration
First and fifth percentile of segment
quality values
Difference between the maximum
and minimum segment quality
values
Average of segment quality values
in each interval)

Total number of stalling events

Average interval between events
Frequency of stalling events
Ratio of stalling duration

Weighted sum of segment
quality values
Weighted sum of stalling
durations
Time since the last stalling
event
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Table 1. Cont.

Models Modeling
Approaches

Segment Quality
Parameters

Session
Duration
(Seconds)

Inputs Used to Represent the Impacts of Factors

Impact of
Initial Delay Impact of Quality Variations Impact of Stalling Events Memory-Related Effects

CQM [22] Analytical
functions

Subjective quality
metric (i.e., MOS) 60–360

Logarithm
function of
initial delay
duration

Histogram of segment quality values
Histogram of switching amplitudes
Average window quality value

Histogram of stalling durations

Last window quality value
Minimum window quality
value
Maximum window quality
value

biQPS [27]

Long-Short
Term Memory
(LSTM)
and Analytical
functions

Bitstream-level
parameters

(i.e., QPs, bitrates,
resolutions, frame-
rates of segments)

60–360
Initial delay is
considered as a
stalling event

LSTM network with segment-basis
parameters
Average window quality value

LSTM network with stalling
durations

LSTM network with
segment-basis parameters
and stalling durations
Last window quality value
Minimum window quality
value
Maximum window quality
value

SQI [16] Analytical
functions

Objective quality
metric (i.e., VMAF) 10

Initial delay is
considered as a
stalling event

Sum of segment quality values per
session duration

A piece-wise function inputted
by stalling durations

Using the Hermann
Ebbinghaus forgetting
curve to estimate the
impact of each stalling
event
A moving average fashion
of the previous cumulative
quality and the instantaneous
quality

KSQI [28]

Operator
Splitting
Quadratic
Program
solver

Objective quality
metric (i.e., VMAF)

8, 10, 13,
and 28

Initial delay is
considered as a
stalling event

Impact of each quality switch depends
on the instantaneous segment quality
and the switching amplitude

Impact of each stalling event
depends on the previous segment
quality and the stalling duration

A moving average fashion
of the previous cumulative
quality and the
instantaneous quality
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To represent segment quality, Rehman’s, Guo’s, Vriendt’s, LSTM, and CQM models
employ the subjective quality metric of MOS while Liu’s, ATLAS, SQI, and KSQI models
use objective quality metrics such as VQM, STRRED, and VMAF. On the other hand, for
Singh’s, Yin’s, and biQPS models, each segment is attributed by one or several bitstream-
level parameters such as quantization parameter (QP), resolution, and bitrate. It should
be noted that the P.1203 model can be optionally fed by either MOS values or bitstream-
level parameters.

Regarding model inputs, the LSTM and biQPS models are inputted by segment-basis
parameters while the others employ various statistics on a session basis, i.e., calculated
over the whole session such as the median and the minimum segment quality values.
With regard to modeling approaches, simple analytical functions (e.g., a weighted sum,
exponential and natural logarithm functions) are applied in seven models, namely Rehman’s,
Guo’s, Vriendt’s, Liu’s, Yin’s, CQM, and SQI. Meanwhile, Singh’s, LSTM, ATLAS, and KSQI
models utilize advanced machine learning methods (e.g., random neural network, LSTM,
and regression models). Interestingly, the P.1203 and biQPS models employ both analytical
functions and advanced machine learning in different modules of the models.

Finally, regarding session durations, five of the models (Rehman’s, Guo’s, Singh’s, SQI,
and KSQI) are built using only short sessions (i.e., ≤30 s) while four models (Vriendt’s, Liu’s,
LSTM, ATLAS) employ medium sessions (i.e., 1–2 min). Meanwhile, long sessions (i.e.,
>2 min) are considered in only three models, namely P.1203, CQM, and biQPS.

3. Evaluation Settings
3.1. Selected QoE Models

Our evaluation aims to investigate existing QoE models for HTTP Adaptive Streaming
by focusing on the following objectives. First, we want to study how existing QoE models
perform across databases with different characteristics of video codec and session duration.
Second, we would like to examine the impact of various factors such as user viewing
devices on performance of QoE models. Our third objective is to investigate the influence
of different design choices (factors, inputs, modeling approaches) to the performance of a
QoE model. To cover a wide variety of existing models, we select thirteen state-of-the-art
models with various characteristics, namely Rehman’s [6], Guo’s [7], Vriendt’s [11], Singh’s [9],
Liu’s [8], Yin’s [12], LSTM [10], ATLAS [26], P.1203 [13,29,30], CQM [22], biQPS [27], SQI [16],
and KSQI [28]. These models are summarized in the above Table 1.

3.2. Databases

To evaluate the performances of QoE models, we will consider a large number of
open databases proposed by different research groups. In this study, we will employ the
following twelve databases: W-SQoE-I [16], W-SQoE-II [17], W-SQoE-III [18], W-SQoE-IV
(full) [19], TRDB [31], VLDB [31], TR04 (full) [21], VL04 [21], TR06 (full) [21], VL13 [21],
TRCQ [22] and VLCQ [22]. Among these databases, only W-SQoE-IV (full) has both H.264
and HEVC video formats while all the other databases have just H.264 video format. Most
databases are tested by PC monitors, except that W-SQoE-IV (full), TR06 (full), and TR06
(full) are tested on both PC monitors and smartphones. In addition, TR06 (full), VL13,
TRCQ, and VLCQ are the only databases that contain long sessions of 3 to 6 min. There are
some other databases like LIVE-NFLX-II [20], LIVE-NFLX [32], LIVE-Stall [24], and LIVE-
TVSQ [33]. However, they are not considered in our study because (1) they are quite simple
in terms of influence factors and/or (2) the segment parameters such as bitstream-level
parameters or MOS values are not fully provided.

In order to have a better understanding the performances of the models, the W-
SQoE-IV (full), TR04 (full), and TR06 (full) databases are divided into sub-databases; each
corresponds to a pair of a viewing device and a codec as shown in Table 2. In addition
because subjective segment quality values are not available for some databases (i.e., W-
SQoE-III, W-SQoE-IV (full), TR04 (full), VL04, TR06 (full), and VL13), we use the P.1203
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model to estimate these values from the corresponding bitstream-level parameters. This
helps to evaluate the models using as many databases as possible.

Table 2. Settings of sub-databases.

Original Database Sub-Database Viewing Device Codec

W-SQoE-IV (full)

W-SQoE-IV_pH264 Smartphone H.264

W-SQoE-IV_pHEVC Smartphone HEVC

W-SQoE-IV_fH264 FHD H.264

W-SQoE-IV_fHEVC FHD HEVC

W-SQoE-IV_uH264 UHD H.264

W-SQoE-IV_uHEVC UHD HEVC

TR04 (full)
TR04p Smartphone H.264

TR04f FHD H.264

TR06 (full)
TR06p Smartphone H.264

TR04f FHD H.264

3.3. Evaluation Procedure and Performance Metrics

With respect to the model implementation, similar to [18,34], we re-implement Rehman’s,
Guo’s, Vriendt’s, Singh’s, Liu’s, and Yin’s models based on the corresponding publications
since their implementations are not publicly available [6–9,11,12]. For the LSTM, ATLAS,
CQM, biQPS, SQI, and KSQI models, we employ the implementations publicized by the
respective authors. Regarding the P.1203 model, an implementation of the standard that is
free to use for research purposes is used [30,35]. Note that, although the P.1203 model has
four input modes, of which mode#3 provides the highest performance, it is not applicable
to some databases (namely W-SQoE-I, W-SQoE-II, W-SQoE-III, and W-SQoE-IV (full)) due
to the lack of input data. Therefore, for these databases, the P.1203 model is tested with
mode#0 while mode#3 is employed for the others.

The impact of initial delay could be separately modeled by a function of its duration
which is then simply integrated into QoE models as an additive component [36,37]. Hence,
in the same way, the models of Rehman’s, Guo’s, and Vriendt’s that do not originally consider
the impact of initial delay are tested in two cases of (1) original (denoted ori) and (2) modi-
fied (denoted mod) by adding the impact of initial delay. It is expected that this addition
will help obtain more understanding of the performance of the models and the impact of
factors as well. Particularly, since most existing models use logarithm functions to model
the impact of initial delay [4,36], such a function that is proposed in [4] with a very high
prediction performance is added into Rehman’s, Guo’s, and Vriendt’s models as follows:

QoEpred = Q + IID, (1)

and
IID = −0.862log(d + 6.718), (2)

where Q and QoEpred are respectively the predicted QoE values before and after modifying,
and IID denotes the impact of the initial delay with the duration of d seconds.

Because each model was developed using one or several specific training databases,
these databases will be excluded from the performance evaluation of that model. In other
words, the performances are calculated on only test databases. In particular, Table 3
describes the training and test databases for each model. In addition, it should be noted
that, because of the lack of input data (e.g., objective quality values of segments), Liu’s,
ATLAS, SQI, and KSQI models are not evaluated over some databases such as TR04f , TR04p,
and VL04 databases as indicated by NA (i.e., not applicable) in Table 3.
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Table 3. Evaluation setting of the databases corresponding to each model. NA: Not applicable.

Model

Database

W-
SQoE-I

W-
SQoE-II

W-SQoE-
III

W-SQoE-
IV

(full)
TRDB VLDB TR04f TR04p VL04 TR06f TR06p VL13 TRCQ VLCQ

Rehman’s [6] Test Test Test Test Test Test Test Test Test Test Test Test Test Test

Guo’s [7] Test Test Test Test Test Test Test Test Test Test Test Test Test Test

Vriendt’s [11] Test Test Test Test Test Test Test Test Test Test Test Test Test Test

Singh’s [9] Test Test Test Test Train Test Test Test Test Test Test Test Test Test

Liu’s [8] Test Test Test Test Test Test NA NA NA NA NA NA NA NA

Yin’s [12] Test Test Test Test Test Test Test Test Test Test Test Test Test Test

LSTM [10] Test Test Test Test Train Test Train Test Test Test Test Test Test Test

ATLAS [26] Test Test Test Test Test Test NA NA NA NA NA NA Test Test

P.1203 [13] Test Test Test Test Test Test Train Train Test Train Train Test Test Test

CQM [22] Test Test Test Test Train Train Test Test Test Test Test Test Train Test

biQPS [27] Test Test Test Test Train Test Train Test Test Test Test Test Train Test

SQI [16] Train Train Test Test Test Test NA NA NA NA NA NA Test Test

KSQI [28] Train Train Test Test Test Test NA NA NA NA NA NA Test Test

In addition, given a combination of a model and a database, a first order linear
regression is applied for subjective and predicted quality values following Recommendation
ITU-T P.1401 [38]. The aim is to compensate for possible variances of different databases
related to subjective experiments.

Regarding the rating scale, besides the 5-point scale from 1 to 5, some models (i.e.,
Liu’s, ATLAS, SQI, and KSQI) and databases (i.e., W-SQoE-I, W-SQoE-II, W-SQoE-III, and
W-SQoE-IV (full)) use the 100-point scale from 0 to 100. To obtain the consistency in our
evaluation, all the quality values in the 100-point scale are converted to the 5-point scale
by (3) following Recommendations ITU-T P.1203.1 and ITU-T G.1071 [29,39]:

Q5 = min(Qmax, max(Qmin, Qmin + (Qmax −Qmin)

×Q100/100 + Q100 × (Q100 − 60)× (100−Q100)× 0.000007)) (3)

where Qmax = 4.9, Qmin = 1.05, Q5 and Q100 respectively denote the quality values in the
5-point scale and the 100-point scale.

To measure the performances of the models, we employ three metrics of Pearson
Correlation Coefficient (PCC), Spearman rank-order correlation coefficient (SROCC), and
Root-Mean-Squared Error (RMSE). In particular, the PCC, the SROCC, and the RMSE are
respectively used to measure the linear relationship, the rank correlation, and the difference
between the predicted quality values of a model and the corresponding subjective quality
values in a database. Note that a higher PCC value, a higher SROCC value, and a lower
RMSE value mean better prediction performance.

4. Evaluation Results and Discussion

In this section, we will first analyze the performance of the models across all the
selected databases. Then, the performance comparisons are conducted for individual
database settings of codecs, viewing devices, and session durations. Based on the obtained
results, some suggestions on how to effectively use the models in different scenarios will
be provided.

4.1. Performance Variation across Databases

Figure 1 shows the performance of all the models corresponding to different databases,
where the red line indicates the average performance of each model. With respect to the
performance variations, it is clear that, for most of the models, their performances vary
significantly across databases. For Rehman’s (ori) model, the PCC value can be as high as
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0.93 in case of the W-SQoE-I database but can also be as low as 0.29 in case of the VL13
database. More drastically, variations in PCC can be observed with Singh’s, Yin’s, and biQPS
models. On the other hand, the performances of the LSTM, SQI, and KSQI models are
relatively stable with PCC values in [0.63, 0.96]. From Figure 1b,c, the performances in
terms of RMSE and SROCC also show the similar trend to that of PCC.

In terms of the average performance, the models of Rehman’s (both ori and mod), Singh’s,
and Yin’s have the lowest average performance (i.e., PCC ≤ 0.57, SROCC ≤ 0.56, and RMSE
≥ 0.67). Meanwhile, the highest average performance is obtained by the LSTM model
(i.e., PCC = 0.88, SROCC = 0.87, and RMSE = 0.38). For more details, Table 4 shows the
performances of all models per database in terms of PCC. It can be seen that the highest
performances are achieved by one of the eight models LSTM, Guo’s, Vriendt’s, P.1203, SQI,
KSQI, biQPS, and CQM. In particular, the LSTM model is very effective, offering the highest
performance on six databases. In contrast, none of the Rehman’s (both ori and mod), Singh’s,
Liu’s, Yin’s, or ATLAS models deliver the highest PCC value on any database.

(a)

(b)

(c)

Figure 1. Performances of individual QoE models across different databases. (a) PCC; (b) SROCC;
(c) RMSE.
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Table 4. Performance in terms of PCC of all models per database. The bold-underlined numbers
show the model having the highest performance.

Database Rehman’s
(ori)

Rehman’s
(mod)

Guo’s
(ori)

Guo’s
(mod)

Vriendt’s
(ori)

Vriendt’s
(mod) Singh’s Liu’s Yin’s LSTM ATLAS P.1203 CQM biQPS SQI KSQI

W-SQoE-I 0.93 0.73 0.93 0.93 0.93 0.93 0.74 0.79 0.38 0.95 0.67 0.39 0.62 0.32 N/A N/A

W-SQoE-II 0.81 0.81 0.86 0.86 0.86 0.86 0.43 0.48 0.27 0.86 0.68 0.40 0.80 0.45 N/A N/A

W-SQoE-III 0.66 0.69 0.67 0.68 0.68 0.69 0.34 0.80 0.42 0.84 0.35 0.85 0.67 0.13 0.66 0.77

W-SQoE-IV (full) 0.51 0.49 0.50 0.51 0.51 0.52 0.19 N/A 0.39 0.63 0.54 0.64 0.60 0.60 0.71 0.71

TR04f 0.52 0.39 0.85 0.85 0.86 0.87 0.77 N/A 0.07 N/A 0.79 N/A N/A N/A N/A N/A

TR04p 0.47 0.29 0.73 0.74 0.74 0.75 0.78 N/A 0.26 0.92 0.74 N/A 0.88 0.88 N/A N/A

VL04 0.36 0.36 0.72 0.72 0.71 0.71 0.35 N/A 0.72 0.91 0.60 0.88 0.90 0.91 N/A N/A

VLDB 0.37 0.44 0.65 0.68 0.71 0.73 0.76 0.71 0.61 0.96 0.56 0.92 N/A 0.95 0.87 0.70

TRDB 0.46 0.38 0.66 0.67 0.70 0.71 N/A 0.65 0.52 N/A 0.57 0.91 N/A N/A 0.88 0.76

TR06f 0.73 0.73 0.85 0.85 0.90 0.90 0.65 N/A 0.27 0.94 0.77 N/A 0.93 0.94 N/A N/A

TR06p 0.66 0.66 0.81 0.81 0.85 0.85 0.61 N/A 0.36 0.93 0.59 N/A 0.92 0.91 N/A N/A

VL13 0.29 0.29 0.75 0.75 0.80 0.80 0.06 N/A 0.63 0.89 0.81 0.92 0.92 0.94 N/A N/A

VLCQ 0.63 0.63 0.74 0.74 0.84 0.84 0.22 N/A 0.58 0.82 0.44 0.88 0.90 0.86 0.89 0.89

TRCQ 0.63 0.63 0.80 0.80 0.92 0.92 0.58 N/A 0.45 0.89 0.63 0.90 N/A N/A 0.75 0.75

4.2. Performance across Video Codecs

In this subsection, a performance evaluation of the models is done separately for
H.264 and HEVC. For this, we divide the W-SQoE-IV (full) database into two sets. The
first set (denoted H.264-encoded) consists of three H.264-encoded sub-databases of W-
SQoE-IV_pH264, W-SQoE-IV_fH264, and W-SQoE-IV_uH264. The second set (denoted
HEVC-encoded) is comprised of three HEVC-encoded sub-databases of W-SQoE-IV_pHEVC,
W-SQoE-IV_fHEVC, and W-SQoE-IV_uHEVC. As the two sets are from the same database
of W-SQoE-IV (full), they share the same settings except the codec. This helps eliminate the
possible bias in the evaluation process.

Figure 2 illustrates the average performance of individual models on the two database
sets. The error bars show the standard deviation values. The trend is that the models
generally yield better performance on the H.264-encoded set. In particular, the KSQI model,
which achieves the highest performance for both of the sets, has quite high performance
for the H.264-encoded set (i.e., PCC = 0.87, SROCC = 0.87, and RMSE = 0.36) but much lower
performance for the HEVC-encoded set (i.e., PCC = 0.70, SROCC = 0.73, and RMSE = 0.59).
This result shows that all the considered models, even the ones taking into account HEVC
characteristics such as P.1203 and KSQI, are not very effective for HEVC-encoded sessions.
This could be because these models are trained first with H.264-encoded videos and then
additionally extended to support HEVC-encoded videos. As the performances on HEVC-
encoded sessions are low, hereafter only the databases using H.264 will be discussed in the
rest of the paper. This helps maintain a reliable analysis as well as reduce the complexity of
the evaluation.
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(a) (b)

(c)

Figure 2. Average performances of individual QoE models over H.264-encoded set and HEVC-encoded
set. (a) PCC; (b) SROCC; (c) RMSE.

4.3. Performance across Viewing Devices

To investigate the performance of the QoE models across different viewing devices,
we consider three separate device combinations corresponding to three database sets.
Particularly, the first set (denoted DBS1) includes three sub-databases of W-SQoE-IV_pH264,
W-SQoE-IV_fH264, and W-SQoE-IV_uH264, which corresponds to three devices of smart
phones, full high definition (FHD) monitor, and ultra high definition (UHD) TV, respectively.
With the focus on smart phone and PC, the second set (denoted DBS2) contains two
databases of TR04p and TR04f . Similarly, the third set (denoted DBS3) is composed of
TR06p and TR06f databases. It is worth noting that the difference between the databases in
a given set is the viewing device only. This allows us to reliably compare the performance
of the same model across different devices.

To analyze the impact of viewing devices on the performances of the models, we use
two metrics of average performance (denoted av) and mean difference (denoted ∆). The use
of av and ∆ is to respectively measure the main tendency and the variation of performances
across viewing devices. The formulas of these metrics are given by (4) and (5). In particular,
given a model, the first metric is measured as the average performance computed over all
the seven databases in the three sets. For the second metric, the performance differences
are firstly calculated between all the database pairs in the same set. Then, the mean of all
the differences is considered as the mean difference value:

av =
∑N

i=1 ∑Ki
j=1 Mi,j

∑N
i=1 Ki

, (4)

∆ =
∑N

i=1 ∑Ki−1
j=1 ∑Ki

l=j+1 | Mi,j −Mi,l |

∑N
i=1 (

Ki
2 )

, (5)
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where N = 3 is the number of sets, Ki is the number of databases in set i, and Mi,j is the
performance metric value corresponding to database j in set i.

Figure 3 shows the results of individual QoE models. It can be seen that, among
the models, the Yin’s model has the lowest average performance with avPCC = 0.27,
avSROCC = 0.44, and avRMSE = 0.84. Meanwhile, the Rehman’s model is found to have the
strongest performance variation. Specifically, its mean differences of ∆PCC, ∆SROCC, and
∆RMSE are respectively 0.11, 0.10, and 0.04 in the ori case, and 0.11, 0.13, and 0.04 in the
mod case. By contrast, the performance of the LSTM, SQI, and KSQI models is not only high
(i.e., high av) but also quite consistent (i.e., low ∆). Particularly, the avPCC, avSROCC, and
avRMSE values are 0.87, 0.88, and 0.39 for the LSTM model, 0.85, 0.85, and 0.39 for the SQI
model, and 0.87, 0.87, and 0.36 for the KSQI model. In addition, the ∆PCC, ∆SROCC, and
∆RMSE values are respectively 0.06, 0.03, and 0.04 for the LSTM model, 0.03, 0.03, and 0.04
for the SQI model, and 0.04, 0.03, and 0.04 for the KSQI model. The reason might be that
these models use either MOS or VMAF as a segment quality metric. Both of the metrics
inherently take into account the impact of a viewing device on the user perceived quality.
Thus, the LSTM, SQI, and KSQI models still perform quite well across viewing devices.
This implies that, to obtain the high and stable performance for different devices, segment
quality metrics should be ones that consider the effect of viewing devices such as MOS and
VMAF. In addition, it is suggested that the LSTM, SQI, and KSQI models can be employed
in the QoE prediction for different viewing devices.

(a) (b)

Figure 3. Average performance and mean difference of the models using the DBS1, DBS2, and DBS3
sets. (a) average performance; (b) mean difference.

4.4. Performance across Session Durations

To study the impact of session durations on the performances of the models, the
obtained results over all the databases with respect to different session durations are
plotted in Figure 4. Note that the first six databases in the horizontal axis (i.e., W-SQoE-I,
W-SQoE-II, W-SQoE-III, W-SQoE-IV_fH264, W-SQoE-IV_pH264, and W-SQoE-IV_uH264)
contain only short sessions with the lengths of from 8 to 28 s. For the next five databases
(i.e., TR04f , TR04p, VL04, VLDB, and TRDB), they consist of medium sessions of about
1-minute in length. With the last five databases (i.e., TR06f , TR06p, VL13, TRCQ, and
VLCQ), long sessions (i.e., ≥3 min) are included. To facilitate the performance comparison
between the models, Figure 5 shows the average and standard deviation (stdev) of the
performances of each model over all the databases.
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(a) (b)

(c)

Figure 4. Performance of all the models with respect to different session durations. (a) PCC;
(b) SROCC; (c) RMSE.

(a) (b)

Figure 5. Average and standard deviation performance of the models over all the databases. (a) aver-
age performance; (b) standard deviation performance.

From these figures, we divide the models into four groups. The first group con-
sists of Rehman’s (both ori and mod), Singh’s, and Yin’s models that have rather low
average performances (i.e., PCC ≤ 0.58, SROCC ≤ 0.56, and RMSE ≥ 0.71). For the
models in the second and third groups, their average performances are acceptable (i.e.,
0.62 ≤ PCC ≤ 0.81, 0.65 ≤ SROCC ≤ 0.82, and 0.45 ≥ RMSE ≥ 0.65). In the second group,
the included models are Liu’s, ATLAS, P.1203, CQM, and biQPS that have drastically vari-
able performances (i.e., stdevPCC ≥ 0.11, stdevSROCC ≥ 0.09, and stdevRMSE ≥ 0.08).
The third group is composed of Guo’s and Vriendt’s models with both the ori and mod cases.
In general, their performances are stable with stdevPCC ≤ 0.09, stdevSROCC ≤ 0.11, and
stdevRMSE ≤ 0.12. For the fourth group, it contains three models of LSTM, SQI, and
KSQI that have quite high average performances (i.e., PCC ≥ 0.81, SROCC ≥ 0.84, and
RMSE ≤ 0.46). In the following, the models in each group will be discussed in detail.
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4.4.1. First Model Group

Figure 6 compares the QoE models in the first group. It can be seen that the perfor-
mances of these models are generally low and considerably variable. In particular, the
ranges of the PCC, SROCC, and RMSE values are respectively [0.29, 0.93], [0.25, 0.90], and
[0.35, 1.02] for Rehman’s (ori) model, [0.29, 0.81], [0.21, 0.83], and [0.42, 1.02] for Rehman’s
(mod) model, [0.06, 0.78], [0.11, 0.84], and [0.55, 1.03] for Singh’s model, and [0.07, 0.72],
[0.07, 0.79], and [0.57, 1.02] for the Yin’s model.

(a) (b)

(c)

Figure 6. Performance of Rehman’s, Singh’s, and Yin’s models in the first group over the test databases.
(a) PCC; (b) SROCC; (c) RMSE.

With respect to the Rehman’s (ori) model, this model yields high performance on the
W-SQoE-I (PCC = 0.93) and W-SQoE-II (PCC = 0.81) databases, which contain short sessions
(8-s and 10-s). By contrast, its performance is generally low on the other databases with
longer session durations (PCC ≤ 0.73, SROCC ≤ 0.81, RMSE ≥ 0.57). It can be explained
that this model is originally developed using short sessions (i.e., 5–15 s), and so not effective
for longer sessions. In particular, it performs poorly on the databases including stalling
events such as VL04, VLDB, and VL13 (i.e., PCC≤ 0.44, SROCC≤ 0.55, RMSE ≥ 0.85). This
is due to the fact that the model does consider the impact of stalling events. This result
suggests that the model built based on short sessions such as Rehman’s may not be effective
for medium and long sessions. In addition, the impact of stalling events is crucial to be
considered in QoE models.

From Figure 6, it can be seen that the performance of Singh’s model on the W-SQoE-
I, TR04f , TR04p, and VLDB databases is acceptable and significantly higher than those
of the other databases. In particular, its PCC and SROCC values are in the range from
0.74 to 0.84 while its RMSE values are from 0.58 to 0.62. This result can be explained as
follows. The Singh’s model mainly focuses on quantifying the impact of stalling events by
means of various inputs such as the total number of stalling vents and the maximum of
stalling durations. Meanwhile, only one input of QP average is used to model the impact
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of quality variations. However, this input is obviously not able to distinguish quality
switches with different amplitudes [40]. Meanwhile, it is well-known that abrupt switches
commonly cause more negative influence than smooth ones [40]. Thus, as a consequence,
this model performs well on the four above databases that contain a major number of
sessions with stalling events. Meanwhile, for the W-SQoE-II, VLCQ, and TRCQ databases
that contain only quality variations, the Singh’s model results in very low performance (i.e.,
PCC≤ 0.65, SROCC ≤ 0.57, and RMSE≥ 0.55). This shows that the use of only QP average
is not sufficient to model the impact of quality variations.

In comparison to the Singh’s model, the Yin’s model is noticeably the worst on
databases containing sessions with frequent stalling events such as W-SQoE-I, TR04f ,
TR04p, and VLDB. This is probably because the Yin’s model simply uses the total stalling
durations to quantify the impact of stalling events. Meanwhile, for the VL04, VL13, and
VLCQ databases, the performance of the Yin’s model is substantially higher. Note that, in
the three databases, most or all of the sessions do not include stalling events. This implies
that the use of the bitrate average and the average of switching amplitudes as in the Yin’s
model is more effective than the QP average in representing the quality variations. Still, the
performance of the Yin’s model is not very high. In particular, the PCC and SROCC values
are less than 0.80 and the RMSE values are higher than 0.57. These results suggest that
the use of the sum of stalling durations only is not able to fully represent stalling events
appearing in streaming sessions. In addition, although the bitrate average and the average
of switching amplitudes are generally better than the QP average, they are still not effective
enough to model the impact of quality variations.

4.4.2. Second Model Group

Figure 7 shows the results of the models in the second group. Along with the sum
of stalling durations, the total number of stalling events are additionally fed in Liu’s and
ATLAS models. Hence, from Figures 6 and 7, it can be seen that their performance is
significantly higher than or similar to that of Yin’s model for the W-SQoE-I, TR04f , TR04p,
and VLDB databases. Compared to the Liu’s model, the ATLAS model produces better
results but is still not very high for the W-SQoE-II database that comprises sessions with only
quality variations (i.e., PCC = 0.68, SROCC = 0.71, and RMSE = 0.53). This can be because
this model relies on the frequency of quality switches to characterize the quality variations,
which cannot account for the degrees of the quality switches (i.e., switching amplitude).

In spite of using the same inputs to represent the impacts of stalling events, the Liu’s
model brings out significantly higher performances than the ATLAS model for the databases
including sessions with stalling events (i.e., W-SQoE-I, W-SQoE-III, VLDB, and TRDB). This
may be caused by the difference between the modeling approaches used in the two models.
Interestingly, the Liu’s model that has higher performance utilizes the simple linear function,
whereas the ATLAS model uses the more sophisticated one of Support Vector Regression.
However, in general, both the approaches are not very effective in quantifying the impact
of stalling events (i.e., PCC ≤ 0.81, SROCC ≤ 0.85, and RMSE ≥ 0.47). Hence, both Liu’s
and ATLAS models are not very effective to predict the QoE of streaming sessions. In
addition, the use of more complicated modeling approaches does not always result in
higher performance.

For the P.1203, CQM, and biQPS models, their performances are very high for the
databases with medium and long sessions, namely TR04p, VL04, VLDB, TRDB, TR06f ,
TR06p, VL13, VLCQ, and TRCQ. In particular, their PCC and SROCC values are in the range
from 0.82 to 0.95, and their RMSE values are between 0.29 and 0.43. The plausible expla-
nation is that they are originally devoted to such session durations (i.e., 60 s–300 s for the
P.1203 model and 60 s–360 s for the CQM and biQPS models). For short sessions of 13 and
28 s (i.e., in W-SQoE-III, W-SQoE-IV_fH264, W-SQoE-IV_pH264, and W-SQoE-IV_uH264),
the P.1203 model generally performs quite well (i.e., PCC≥ 0.76, SROCC ≥ 0.79, and RMSE
≤ 0.48). However, for shorter sessions of 8 and 10 s (i.e., in the W-SQoE-I and W-SQoE-II
databases), its performance is drastically reduced (i.e., PCC ≤ 0.40, SROCC ≤ 0.53, and
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RMSE ≥ 0.65). In a similar behavior, the performance of the biQPS model is acceptable for
28-second long sessions in W-SQoE-IV_fH264, W-SQoE-IV_pH264, and W-SQoE-IV_uH264
(i.e., PCC≥ 0.64, SROCC≥ 0.69, and RMSE≤ 0.63). However, its performance is unsatisfac-
tory for shorter sessions (i.e., PCC ≤ 0.45, SROCC ≤ 0.45, and RMSE ≥ 0.64). Meanwhile,
the performance of the CQM model is acceptable for all the databases including short
sessions. However, these results are still not very high. Specifically, its PCC, SROCC, and
RMSE values range respectively in [0.62, 0.80], [0.65, 0.84], and [0.73, 0.43]. This result
implies that the P.1203, CQM, and biQPS models should be employed for only medium
and long sessions with the lengths from 60 to 360 s.

(a) (b)

(c)

Figure 7. Performance of Liu’s, ATLAS, P.1203, CQM, and biQPS models in the second group over the
test databases. (a) PCC; (b) SROCC; (c) RMSE.

4.4.3. Third Model Group

Figure 8 shows the performance of the QoE models in the third group. Although Guo’s
and Vriendt’s models are very simple, considering only the impact of quality variations,
their performances in both the ori and mod cases are generally stable and acceptable for
all the databases including those containing sessions with stalling events (i.e., PCC ≥ 0.64,
SROCC ≥ 0.55, and RMSE ≤ 0.72). They even provide quite high performances for many
databases such as the W-SQoE-I, W-SQoE-II, TR04f , TR06f , and TR06p databases (i.e.,
PCC ≥ 0.81, SROCC ≥ 0.76, and RMSE ≤ 0.56).
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(a) (b)

(c)

Figure 8. Performance of Guo’s and Vriendt’s models in the third group over the test databases.
(a) PCC; (b) SROCC; (c) RMSE.

Although Liu’s and ATLAS models additionally take into account the impacts of
stalling events, their performances are not significantly higher and even, in some cases,
lower than the simple models of Guo’s and Vriendt’s. This can be explained by the fact
that stalling events commonly appear after segment quality decreases. Therefore, to a
certain extent, modeling the impact of quality variations can somewhat reflect the impact
of stalling events. In addition, it is suggested that the impact of quality variations is a key
component in QoE models. In addition, it is once again confirmed that complex models
that contain more inputs and take into account more influence factors do not always have
better performances.

Within the same case of ori or mod, it can be seen that difference in performance of
these two models depends on session durations. In particular, the difference is small for
short and medium sessions. In such cases, the maximum difference is 0.06 for PCC, 0.07 for
SROCC, and 0.05 for RMSE. Meanwhile, in case of long sessions, the longer the duration is,
the bigger the difference becomes. For the TRCQ database, the difference is up to 0.13 for
PCC, 0.16 for SROCC, and 0.15 for RMSE. In addition, the Vriendt’s model tends to perform
better than the Guo’s model. This result implies that, to represent the impact of quality
variations, the statistics used in the Vriendt’s model (i.e., average and stdev of segment
quality values, number of quality switches) are more effective than the ones employed
in the Guo’s model (i.e., median and minimum segment quality values), especially for
long sessions.

From Figure 8, it can also be seen that the addition of the impact of initial delay to Guo’s
and Vriendt’s models does not bring significant improvements as the difference between the
two cases ori and mod is trivial for all the databases. In particular, the maximum gains of the
mod case in terms of PCC, SROCC, and RMSE are respectively 0.02, 0.02, and 0.02 for both
Guo’s and Vriendt’s models. A possible reason is that the initial delay in these databases is
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commonly short (e.g.,1 s, 2 s, or 5 s) and could be tolerant [3]. Therefore, for short initial
delay, its impact is marginal.

4.4.4. Fourth Model Group

Figure 9 compares the performance of the QoE models in the fourth group. We can see
that these models perform generally well across the databases. In particular, the average
PCC, SROCC, and RMSE values are respectively 0.88, 0.88, and 0.37 for the LSTM model,
0.83, 0.84, and 0.43 for the SQI model, and 0.81, 0.84, and 0.46 for the KSQI model. In
particular, the performance of the LSTM model is generally the highest and most stable.
In particular, the PCC, SROCC, and RMSE range respectively in [0.76, 0.96], [0.77, 0.96],
and [0.27, 0.48] for the LSTM model, in [0.66, 0.88], [0.69, 0.93], and [0.31, 0.59] for the SQI
model, in [0.70, 0.90], [0.78, 0.89], and [0.31, 0.69] for the KSQI model.

(a) (b)

(c)

Figure 9. Performance of the LSTM, SQI, and KSQI models in the fourth group over the test databases.
(a) PCC; (b) SROCC; (c) RMSE.

Except for the W-SQoE-IV_uH264 database, the lowest PCC and SROCC values are
0.82 and 0.77 while the highest RMSE value is 0.46. For the W-SQoE-IV_uH264 database
using UHD TV, the obtained results are not very high but still acceptable (i.e., PCC = 0.76,
SROCC = 0.81, and RMSE = 0.48). This result implies that, among the considered models,
the LSTM model is the best one to predict the QoE of streaming sessions with various
viewing devices and different session durations. In addition, it is suggested that the use of
segment-basis parameters and an LSTM network is quite effective for reflecting the impacts
of quality variations, stalling events, and memory-related effects. In addition, it is essential
to consider temporal relations between impairment events in QoE models. However, there
is still room for improvements of the LSTM model and the others as well, especially in the
case of UHD TV.

For the SQI and KSQI models, their performances are acceptable, but not very high
for most of the databases. In particular, the lowest performance in terms of PCC, SROCC,
and RMSE is 0.66, 0.69, and 0.59 for the SQI model, and 0.70, 0.78, and 0.69 for the KSQI
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model. This can be because these models are built based on some assumptions that are not
completely valid for diverse session durations and for various patterns of quality variations
and stalling events in the databases. For example, it is assumed that the influence of each
impairment event is independent and additive. This means that temporal relations between
events are not taken into account. In both the models, the impact of each stalling event only
depends on its duration and the previous segment quality. While the SQI model does not
consider the impact of quality switches, the KSQI model assumes that the impact of each
quality switch is dependent on its switching amplitude and the current segment quality.

4.5. Concluding Remarks

In the above, our evaluation is divided into different cases, where models are eval-
uated in terms of codecs, viewing devices, and session durations. Based on different
characteristics of models, a service provider may select an appropriate model. For example,
for e-learning, a QoE model that supports PC screens and long sessions should be used,
whereas a model that is good for smartphone screens and short sessions can be used for
mobile streaming of short-form videos.

Based on the above results and discussions, the following important remarks regarding
the considered QoE models can be made.

• In general, the performances of the models vary significantly across databases. Among
them, the three models of LSTM, SQI, and KSQI are found to be the most stable ones.

• Regarding encoding codecs, all the considered models result in better performance on
H.264-encoded streaming sessions than HEVC-encoded ones. Surprisingly, even the
models taking into account HEVC characteristics such as P.1203 and KSQI have the
similar behavior.

• With respect to viewing devices, the use of MOS and VMAF as segment quality metrics
is quite effective to help the model perform more consistently. It is suggested that
the LSTM, SQI, and KSQI models can be employed for QoE prediction with different
viewing devices.

• The models that are developed using short sessions such as the Rehman’s model may
result in low and drastically variable performances for medium and long sessions.

• The ability to effectively quantify the impacts of (1) quality variations and (2) stalling
events significantly affects the performance of QoE models. Hence, these two factors
should be equally considered in order to build an effective model. In addition, it is
found that the impact of stalling events can be partially covered by the impact of
quality variations as seen in the case of the Vriendt’s model. In addition, it is essential
to consider temporal relations between impairment events in QoE models.

• Only one single statistic such as the QP average is insufficient to fully represent quality
variations in a streaming session. Combination of several statistics such as the average
of segment quality values, the switch frequency, and especially the degrees of quality
switches (i.e., switch amplitudes) is found to be indispensable to effectively quantify
the impact of quality variations.

• Similarly, the total stalling duration alone, which is employed in most models, is not
able to characterize the factor of stalling. Other statistics such as the number of stalling
events and the maximum stalling duration should be additionally considered.

• Developing complex models (i.e., more inputs and complicated modeling approaches) does
not always result in better performance as found in the case of Yin’s and ATLAS models.

• Among the considered models, the LSTM model is the best one to predict the QoE of
streaming sessions with different viewing devices and session durations. To evaluate
the QoE of medium and long sessions (i.e., ≥1 min), the three models of P.1203, CQM,
and biQPS are also comparable.

• There is still room for improvements of the existing models, especially in the cases of
various viewing devices (e.g., ultra high definition TV) and advanced video codecs
(e.g., HEVC).
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5. Conclusions

In this paper, we have investigated the performances of thirteen existing QoE models
over twelve open databases for QoE prediction in HTTP Adaptive Streaming. Based on
the results of the evaluations, various findings were provided with important insights into
the behavior/performance of the considered QoE models. In particular, it was found that
the LSTM model is most efficient, followed by the SQI and KSQI models. Interestingly,
simple models such as Guo’s and Vriendt’s are also found to be stable and acceptable for
most databases. For the three models of P.1203, CQM, and biQPS, they are quite effective
for long sessions. It is expected that the findings presented in this paper are useful for
researchers and service providers to assess the QoE of streaming services and evaluate
delivery solutions in HAS. However, there are some open issues to be tackled in the
future. First, the support for the popular HEVC coding format should be very much
improved. Second, investigations with more databases of various viewing devices and
session durations will be conducted to better understand and enhance the existing models.
The impact of quality scores (e.g., different MOS scales) on database developments and
QoE model performances should also be studied in more detail. In addition, emerging
content types such as 360-degree videos and volumetric videos will be a new and hot
direction to be considered.
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