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ABSTRACT

The proposed method, Neural Radiance Projection (NeRP),
addresses the three most fundamental shortages of training
such a convolutional neural network on X-ray image seg-
mentation: dealing with missing/limited human-annotated
datasets; ambiguity on the per-pixel label; and the imbalance
across positive- and negative- classes distribution. By har-
nessing a generative adversarial network, we can synthesize
a massive amount of physics-based X-ray images, so-called
Variationally Reconstructed Radiographs (VRRs), alongside
their segmentation from more accurate labeled 3D Computed
Tomography data. As a result, VRRs present more faithfully
than other projection methods in terms of photo-realistic met-
rics. Adding outputs from NeRP also surpasses the vanilla
UNet models trained on the same pairs of X-ray images.

Index Terms— GAN, Chest X-ray, NeRF, NeRP

1. INTRODUCTION

X-ray (XR) imaging can create photos of the body inside. The
images show the parts in different intensities of grayscale. It
is because various tissues absorb particular amounts of radi-
ation. The most typical use of X-rays is checking for broken
bones (fracture), but X-rays are also used for other purposes:
chest XRs can spot pneumonia, or mammograms use XRs to
look for breast cancer. The amount of radiation from an XR
is small. For example, a chest XR gives out a radiation dose
similar to the amount our body naturally exposes to from the
environment over ten days.

Although XR imaging is widely used as an indispens-
able tool in diagnostic medicine thanks to its fast and cheap
operations, the collected XR datasets are often long-tail and
imbalanced, i.e., the number of negative cases is dominant
compared to those that have disease-detection, because many
typical cases take regular healthcare checkup annually. There
is also a worldwide shortage of fully understanding the image
interpretation since many overlapping things are projected
on the same pixels. In order to resolve this issue, more ad-
vanced imaging techniques such as Computed Tomography
(CT) or Magnetic Resonance (MR) are solicited to disentan-
gle the ambiguity in 3D space. They provide more reliable
and golden ground truth to examine the patients. However,

only severely positive cases need to take further scans due to
their expense in cost and time operations. On the other hand,
Artificial Intelligence and Machine Learning have shown re-
markable performance recently in the automated evaluation
of medical images. Nevertheless, they require well-annotated,
balanced, and relatively large datasets to produce an excellent
supervised-learning model for deployment. These drawbacks
pose significant challenges in starting an XR-based medical
image analysis study for new pathology problems when the
requirements from both sides burden the others.

Our work stems from a recently advanced solution on
Neural Radiance Field (NeRF) [1] that attempts to synthe-
size/reconstruct the scene from sparse-view images. We
leverage the ray marching and ray sampling strategy to imple-
ment our differentiable Neural Radiance Projection (NeRP)
to deal with common issues which hinder the deep learning
approach on direct and end-to-end solutions for radiograph
image analysis: (1) Missing/Limited amount of data: Usu-
ally, when we start a brand new image analysis problem with
a specific goal, we are entirely lacking the data or having
only a few samples for particular tasks. (2) Annotations often
come with uncertainties: Due to the blurry effect and depth
estimation, it is ambiguous to label the per-pixel region of in-
terest, especially on projected radiographs when many things
can accumulate on the same pixels. (3) Imbalanced data since
positively severe cases rarely appear in the datasets: in our
case, less positive images for certain classes in XR collection
can be readjusted by more positive CT scans.

In summary, the proposed method aims to produce many
more physics-based XR images with golden CT scan labels.
Our contributions are several-fold as follows:

• Variational Cameras within proximities to generate a large
number of labeled pairs of XR images.

• A Generative-Adversarial Network (GAN) to enhance the
realism of generated XR data.

• A data augmentation to enrich the limited/missing training
pair of XR images.

To the best of our knowledge, this work is the first attempt that
leverages heterogeneous data from both CT and XR to train a
segmentation model and improve its performance compared
to the baselines of using XR data only. We demonstrate its
usability in real-world applications of segmenting X-ray im-
ages.
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Fig. 1: (a) A real XR image (b) XR-like images generated by
DDR methods with or without pre-windowing.

2. METHOD

2.1. XR-like image generation

The most direct way to transform a typical 3D CT volume
data to a 2D image is to average the intensity (ray accumu-
lation) along particular directions (view direction) to gener-
ate such an X-ray-like image. This approach gives us a brief
sense of how overall the 3D CT data looks like in the con-
text of projection, but it does not look similar to the real X-
ray image that is commonly taken, in terms of contrast or
intensity, even with common pre-windowing setups of CT
data (see Fig. 1). It can be explained that this averaging in-
tensity projection (AIP) does not fully reflect the photon at-
tenuation of heterogeneous absorber (CT data) measuring in
the Hounsfield Unit (HU) scale. Several techniques such as
MIDA [2] combines a linear lookup table (intensity versus
opacity) and non-linear ones such as Maximum-Intensity Pro-
jection (MIP) to promote better certain material visualization.

The 2D Digitally Reconstructed Radiographs (DRRs)
generated from 3D CT images by more advanced meth-
ods such as volume rendering algorithms [3, 4], have better
representations of photo-realistic projections. There is also
seminal work that attempts to generate physics-based XR
such as DeepDRR [5], XraySyn [6]. They both require hand-
crafted designed matters of interest (masks) to determine
material thickness criteria to discriminate different radiant
interactions. On the other hand, XPGAN [7] produces non-
physics-based XR with source location-free. However, even if
it can approximate the projection by a 3D-2D neural network,
the novel view synthesis is not amendable since the viewpoint
does not involve in the parameters of training. In an extreme
case, slightly rotating the CT volume results in a very differ-
ent XR image. Therefore, it motivates us to develop a fully
end-to-end learning method to create a photo that looks real-
istic to the particular XR images without human assistance of
segmentation or prior knowledge of radiance interaction but
still be able to manipulate the viewpoint.

2.2. Model overview

As shown in Fig. 2, the proposed method, NeRP, consists of
these building blocks: a Generator G includes a MapperM,
a Viewer V; and a Discriminator D that are parameterized by
following objective functions:

min
θG

max
θD

Ladv(G,D) + λLreg(G) (1)

min
θM,θV

max
θD

Ladv(M,V,D) + λLreg(M,V) (2)

The Mapper M takes a single channel 3D CT volume
y1×D×H×W ∼ PY , which has been normalized to produce
a two-channel volume yµγ2×D×H×W that consists of a Matter
Field (yµ1×D×H×W volume) combined with an Opacity Field
(yγ1×D×H×W volume). The subscripts indicate the shapes of
tensors which have channel C = {1, 2}, depth D, height H ,
and width W , respectively. They will be omitted for simplic-
ity. The maximum bandwidth of yγ is set 100-fold smaller
than yµ to foster the XR-like effect and discriminate differ-
ent roles between them. Otherwise, these two channels are
interchangeable and behave similarly to each other. Then
the Viewer V accepts the radiance yµγ , constructs the beam
emission absorption model with ray bundle r ∼ PR so that
these rays can interact with the implicit volume function yµ

and the opacity yγ . The proposed method also randomly
samples a (variationally) perspective camera pose c ∼ PC
within a certain proximity of Field of View (FoV) to form
the final image on the screen. The result is therefore called
Variationally Reconstructed Radiographs (VRRs), as distin-
guish to DRRs. We employ Generative Adversarial Networks
(GANs) [8] in XPGAN [7] to treat the VRR results as fake
images and train the networks adversarially with the true XR
samples that drawn from the real datasets x ∼ PX . The ad-
versarial loss Ladv is formally defined in Eq. 3 with the ex-
pectation of NeRP result is expanded in Eq. 4:

Ladv(G,D) = E
x∼PX

[logD(x)] + E
y∼PY

[1− logD(G(y))]

(3)

E
y∼PY

[1− logD(G(y))] = E
y∼PY
r∼PR
c∼PC

[1− logD(V(M(y), r, c))]

(4)
Last but not least, we add an `1 per-pixel loss between

the generated image and the ray tracing rendered version,
weighted by λ to regularize the projected images to have the
same anatomical structure as of its original CT volumes.

Lreg(G) = E
y∼PY

[‖G(y)− Proj(y)‖1] (5)

For wide-range choices of {0.05, 0.1, 0.5, 1, 5, 10}, λ = 1
yields better convergence and image quality compared to
other options.



Fig. 2: Neural Radiance Projection Overview.

2.3. Implementation details

To leverage the power of state-of-art models, we utilize ar-
chitectures of the current latest methods. Specifically, we use
V-Net [9] for Mapper M and U-Net [10] for Discriminator
D [11]. It is worth noting that having U-Net as a Discrimina-
tor stabilizes the training process. For the Viewer V , the ray
bundle is set as the same as image size (256× 256), each ray
is sampled with 512 points. The entire system is trained for
200 epochs with an NVIDIA 3080 Ti GPU for one week.

3. DATA

Table 1: Statistics of CT volumes and XR images.

Type Dataset Description Total

CT
NSCLC [12] Lung Cancer 402
MosMed [13] COVID-19 1110

Total 1512

CXR

ChinaSet [14] Tuberculosis 566
Montgomery [14] Tuberculosis 138

JSRT [15] Lung nodules 247
Total 951

The CT volumes were prepared from two datasets. The
first is Non-Small Cell Lung Cancer CT Volume, comes from
the radio-genomic database of non-small cell lung cancer pa-
tients at Stanford University Medical Center and Palo Alto
Veterans Affairs Healthcare System. This collection has 402
annotated CT from a cohort of 211 patients. The MosMed
dataset is comprised of COVID-19 related CT scans from the
hospitals in Moscow, Russia. Besides that, the chest X-Ray
images come from three different sources. Both Montgomery
and ChinaSet were publicized by the US National Library of
Medicine in 2014. The former dataset comes from the Tu-
berculosis screening program of Montgomery County, Mary-

land, USA, and consists of 138 anterior-posterior CXR im-
ages; the latter contains 566 frontal projections in both normal
and tuberculosis patients [14]. The Japanese Society of Ra-
diological Technology published the JSRT database in 1998.
This source includes 247 chest radiographs from Japanese and
American institutions. These images were used to identify the
pulmonary nodules in terms of five degrees [15]. The dataset
statistics are collected in the Table 1.

4. RESULTS

4.1. Quality of generated images

Table 2: Image quality metrics:
Higher IS and lower FID, KID mean better image quality.

Method IS ↑ FID ↓ KID ↓
DRR [3] 1.799 ± 0.050 197.071 0.226 ± 0.013

DeepDRR [5] 2.323 ± 0.062 153.399 0.158 ± 0.013
NeRP 2.454 ± 0.072 161.675 0.161 ± 0.013

Many relevant metrics can can be used to evaluate the
results on how photo-realistic they are over the real datasets:
such as Inception Score (IS) [16], Frechet Inception Dis-
tance (FID) score [17] and Kernel Inception Distance (KID)
score [18]. We pre-generate 4020 XR images from 402 CT
data from NLCSC (one volume produces 10 projections with
different viewpoints) for each setup (DRR, DeepDRR, NeRP)
and compare against each other over the distribution of Chest
XR datasets [14, 15]. Table 2 shows the results of each met-
rics. Our method has similar scores to DeepDRR, and both
are better than DRR. Note that although DeepDRR has more
parameters to control, such as spectrum, photon counts, or
scattering, it does not support generating the projected labels.



4.2. Lung Segmentation

4.2.1. Missing annotated XR data

In order to show the advantages of NeRP, we compare its per-
formance against DRRs on Lung segmentation of Chest XR
in the scenario of lacking the training data entirely, only test
on given manual sets as discussed. To make a fair assessment,
we set the same viewpoint-generated VRRs from NeRP and
DRRs. The only difference between them is that our radi-
ance yµγ is learnable while DRRs have fixed HU-based yµ

and constant yγ . Fig. 3 indicates some VRR samples gener-
ated by NeRP that have been used for training a vanilla UNet
to perform pixel-based lung segmentation problems. As can
be seen in Table 3, using our method can outperform a DRR-
based dataset up to 5% on the Dice Score [19] metrics. This
can be explained that the XR images produced by NeRP are
much typical than by DRRs, and hence require less overhead
transfer compared to those direct DRR CT-generated samples.

Fig. 3: Samples of NeRP pairs for Lung Segmentation task.

Table 3: Comparison of Dice Scores of DRR- and NeRP-
generated pairs from 3D CT data, and test on human-
annotated 2D XR images for Lung Segmentation.

Dataset ChinaSet Montogomery JSRT Average
DRR [3] 0.8033 0.8060 0.8229 0.8068

NeRP 0.8491 0.8261 0.8357 0.8412

4.2.2. Limited annotated XR data

Fig. 4: Samples of NeRP data for Lung Segmentation task.
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Fig. 5: Dice scores of Lung Segmentation task.

Fig. 6: Comparison in Pleural effusion lung collapse samples.

In this assessment, we gradually include portions of Chest XR
with Lung annotation to train the U-Net and observe the per-
formance over the quota of having extra annotated subsets of
2D XR data (see Fig. 4). Fig. 5 shows the Dice Scores on
the separated test set for this setup. The horizontal axis rep-
resents the ratio (G/X) between the number of the generated
images and XR images: 0 means that the model was trained
from XR only, and Inf means that model was trained from
the generated images only. The results indicate that mixing
the handful of annotated data with NeRP images yields better
performance (up to 2%) over conventional DRR.

Furthermore, we choose extreme cases of Chest XR im-
ages with Pleural Effusion Lung Collapse, i.e., lung lobe on
one side is filled by high contrast and brightness pixel val-
ues. As depicted in Fig. 6, combining NeRP and XR data
promotes better lung regions even if the appearance of dark
areas is partially missing.

5. CONCLUSION

We present NeRP, which can produce VRRs. Comparing to
conventional DRRs, NeRP can generate much more faithful
images in common photo-realistic metrics. This work ad-
dresses the three most fundamental issues of establishing a
machine learning model to solve XR-based image analysis
problem: (1) Missing/Limited amount of data; (2) Uncertain
annotation; and (3) Imbalanced datasets. By leveraging the
ability of massive amount pairs of segmentation data created
by NeRP, we can utilize more golden ground truth and ready-
to-use CT data to balance the currently long-tail datasets with
more accurate projected 3D labels. This usefulness will be
applied for more XR-based image analysis problems such as
rare cancer detection, diagnosis, and prognosis.
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